Near Frattini Subgroups of Certain Generalized Free Products of Groups

نویسندگان

  • Mohammad K. Azarian
  • M. K. Azarian
چکیده

Let G = A ∗H B be the generalized free product of the groups A and B with the amalgamated subgroup H. Also, let λ(G) and ψ(G) represent the lower near Frattini subgroup of G and the near Frattini subgroup of G respectively. We show that G is ψ−free provided: (i) G is any ordinary free product of groups; (ii) G = A ∗H B and there exists an element c in G\H such thatH ∩H = 1; (iii) G = A ∗H B and λ(G) ∩H = μ(G) ∩H = 1; (iv) G = A∗HB, where A and B are finitely generated and λ−free, and H = C(∞); (v) G = A ∗H B, and H 6= 1 is malnormal in at least one of A or B; (vi) G is a surface group; (vii) G is the group of an unknotted circle in R3; (viii) G is a group of F−type with only odd torsion where neither U nor V is a proper power; (ix) G is a non-elementary planar discontinuous group with only odd torsion. Furthermore, we show that if G = A ∗H B, then: (i) λ(G) ≤ H, provided both A and B are nilpotent; (ii) ψ(G) ≤ H, provided both A and B are finitely generated and nilpotent. AMS Subject Classification: 20E06, 20E28

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conjectures and Questions Regarding Near Frattini Subgroups of Generalized Free Products of Groups

Let G = A ∗H B be the generalized free product of the groups A and B with the amalgamated subgroup H. Also, let λ(G), μ(G), ψ(G), K(G,H), and Tor H represent the lower near Frattini subgroup of G, the upper near Frattini subgroup of G, the near Frattini subgroup of G, the core of H in G, and the torsion subgroup of H, respectively. Since 1990 a series of papers have been published by the author...

متن کامل

Near Frattini Subgroups of Residually Finite Generalized Free Products of Groups

Let G = A HB be the generalized free product of the groups A and B with the amalgamated subgroup H. Also, let λ(G) and ψ(G) represent the lower near Frattini subgroup and the near Frattini subgroup of G, respectively. If G is finitely generated and residually finite, then we show that ψ(G) ≤ H, provided H satisfies a nontrivial identical relation. Also, we prove that if G is residually finite, ...

متن کامل

Groups in which every subgroup has finite index in its Frattini closure

‎In 1970‎, ‎Menegazzo [Gruppi nei quali ogni sottogruppo e intersezione di sottogruppi massimali‎, ‎ Atti Accad‎. ‎Naz‎. ‎Lincei Rend‎. ‎Cl‎. ‎Sci‎. ‎Fis‎. ‎Mat‎. ‎Natur. 48 (1970)‎, ‎559--562.] gave a complete description of the structure of soluble $IM$-groups‎, ‎i.e.‎, ‎groups in which every subgroup can be obtained as intersection of maximal subgroups‎. ‎A group $G$ is said to have the $FM$...

متن کامل

Frattini supplements and Frat- series

‎In this study‎, ‎Frattini supplement subgroup and Frattini supplemented group‎ ‎are defined by Frattini subgroup‎. ‎By these definitions‎, ‎it's shown that‎ ‎finite abelian groups are Frattini supplemented and every conjugate of a‎ ‎Frattini supplement of a subgroup is also a Frattini supplement‎. ‎A group action‎ ‎of a group is defined over the set of Frattini supplements of a normal‎ ‎subgro...

متن کامل

Abelian groups have/are near Frattini subgroups

The notions of nearly-maximal and near Frattini subgroups considered by J.B. Riles in [20] and the natural related notions are characterized for abelian groups.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011